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Abstract: -To extract fine details from input bracketed images and preserve them in the final image, a novel 

exposure fusion method based on the nonsubsampled contourlet transform (NSCT) is presented in this paper，in 

which unique visual weight map is used for the detail extraction and an improved weight measurement is 

developed to remove the motion objects in dynamic scenes. Furthermore, a fast algorithm for contrast 

enhancement is applied to adjust the contrast of decomposition subbands and gain control is also introduced to 

modify the visibility of the blended subbands at different scales. Finally, the resulting image with more visible 

details is reconstructed by the inverse NSCT. Experimental results demonstrate that the proposed method can 

preserve fine details and produce sharper images, especially in enhancing detail visibility in the dark areas. 
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1 Introduction 
 

High dynamic range (HDR) image has a much larger 

scope range than low dynamic range (LDR) image. 

However, most display devices only have limited 

dynamic range. In essence, a single image captured 

by standard digital camera only contains a portion of 

feature information in real-world scenarios, so the 

pictures taken by a conventional camera often result 

in the loss of detail information. Although some 

professional HDR devices can be exploited to 

capture the real scene information, but these 

professional devices are very expensive and not 

appropriate for most users. On the other hand, users 

may apply HDR imaging techniques to reconstruct a 

HDR image from a set of LDR images [1, 2], and 

then use tone mapping techniques to derive a LDR 

image that can be visualized on standard devices in 

[3-6] . However, tone mapping is time consuming 

and not efficient for requiring camera parameters to 

calculate the radiometric response function. 

Comparing with these schemes above, exposure 

fusion is a good way to implement the rendering of 

an HDR image on a conventional LDR display 

device, which can recover the full dynamic range of 

a natural scene without generating of an intermediate 

HDR image. Thus application of this technique can 

extract abundant information from the source images 

and preserve them for the fused result. 

So far, various techniques have been developed for 

exposure fusion so that the information of the source 

images can be fully visualized. Mulscale 

decomposition image fusion based has been 

recognized as the effective work and achieved rapid 

development in the past decades. Many mulscale 

transform tools have been developed and applied to 

image fusion. For example, the pyramid 

decomposition [7-9], discrete wavelet transform 

(DWT) [10], anisotropic diffusion (ASD) [11], 

contourlet (CT) [11, 12] and nonsubsampled 

contourlet transform (NSCT) [13], and so on. 

Compared with other multiscale transforms, NSCT is 

a more prominent tool for image decomposition. 

Because of its multiscale, multidirection and full 

shift invariance, it can efficiently capture higher 

dimensional singularities and avoid pseudo-Gibbs 

phenomena that presents in the contourlet transform. 

Specifically, the impact of misregistration on the 

fused results is also reduced effectively [14]. These 

properties are more suitable for image fusion. 
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Usually, the underexposed or overexposed images 

usually show the low resolution in some regions even 

the whole areas. Whereas color balance and contrast 

enhancement have the strong impact on visual effect. 

Thus, before image fusion, performing contrast 

enhancement for the input sequence is can efficiently 

improve image quality. Inspired by the method in the 

literature [15], we implement the contrast adjustment 

of subband images by solving a Poisson equation, 

with two different variants. This new tool is fast and 

efficient, requiring no manual selection. Another 

advantage is to brighten up areas of poor contrast but 

not at the expense of saturating areas of good 

contrast. 
In this paper, we propose a novel exposure fusion 

scheme based on NSCT, which employs different 

weight measurements to compute weight maps of 

input images in the static and dynamic scenes, 

respectively. This method not only extracts fine 

detail information of the original images, but also 

provides the artifact-free reproduction for the 

dynamic scenes. Moreover, to increase the local 

contrast in the dark areas and improve the brightness 

of the final image, gain control is also introduced to 

adjust the brightness of the blended subbands. 

The rest of this paper is organized as follows. In 

Section 2, related researches are reviewed. In Section 

3, we first give a brief introduction of the proposed 

workflow and NSCT, and then detailedly describe 

the implement process of the proposed fusion 

algorithm. Experimental results and analysis are 

illustrated in Section 4. Lastly, conclusions are given 

in Section 5. 

2 Related Researches 
Exposure fusion, as a subarea of image fusion 

approaches, is a recently developed technique for 

extracting more details from a set of exposure images. 

During the past decades, numerous exposure fusion 

approaches have been proposed to synthesize a high 

quality image, aiming to maximize the information 

contents of the final image. For example, Goshtasby 

et al. partitioned source images into uniform blocks, 

and selected those blocks containing the most 

information to synthetize an image in [16]. Mertens 

et al. fused the bracketed images into a high quality 

image using Gaussian and Laplacian pyramid 

decomposition in [17]. Raman and Chaudhuri used 

edge-preserving bilateral filter for fusing exposure 

images, in which the appropriate matting function 

was generated for automatic process in [18] More 

recently, a probabilistic model that preserves the 

luminance levels and a quadratic optimization based 

method were respectively proposed to generate the 

final image with more details in [19, 20]. 

Most existing exposure fusion techniques are only 

suitable for static scene [20, 21]. However, images 

captured by natural scenes usually contain the 

motion objects, so these methods mentioned above 

may produce serious distortions in dynamic scenes, 

resulting in annoying ghost artifacts in the resultant 

image. Many solutions that adapt to dynamic scenes 

have been presented to eliminate the adverse impacts 

caused by motion objects. For instance, Gallo et al. 

produced an artifact-free HDR image by averaging 

the radiance estimates of all patches which were 

consistent with a reference image in [22]. Shen et al. 

presented a detail-preserving exposure fusion method 

using subband architecture in [23], which generated a 

ghost-free product by mask images. Although these 

methods produced an image without ghost artifacts, 

the fusion process needed to preselect a reference 

image or mark the moving objects by manual 

intervention. In addition, in [24, 25], the methods 

based on gradient information and median filter were 

used to merge a set of images from dynamic scenes 

into a ghost-free image. However, the fusion image 

produced by these methods usually suffers from the 

loss of detail information. Unlike the traditional 

exposure fusion approaches, the proposed scheme 

not only extracts fine details in the source images, 

but also effectively removes ghost artifacts. 

3 Proposed Algorithm 
Fig. 1 shows the schematic diagram of the proposed 

exposure fusion method. First, each source image is 

decomposed into a low-pass image and a series of 

high frequency subimages using NSCT, and 

simultaneously weight map of each input image is 

computed and used for extracting detail information 

from the source images. Then a fast algorithm for 

contrast enhancement with two simple variants is 

used to tune all decomposition subband coefficients, 

which helps to improve color balance and contrast of 

decomposition subbands while conserving good 

global appearance. Further, gain control maps are 

introduced to rectify the brightness of all blended 

subimages, the purpose of which is to augment the 

visibility of details at various scales. Finally, the 

resultant image with more visible details is 

reconstructed by the inverse NSCT. For the 

simplicity of illustration, the image processing 

workflow only describes the fusion process using 

two input images     and      as a special case. 

Obviously, the proposed scheme can be easily 

extended to fuse multiple images
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Fig. 1 The general framework of the proposed method 

 

3.1 NSCT based image analysis 
NSCT, as a shift invariant version of contourlet, is a 

fully shift-invariant, multiscale, and multidirection 

expansion that has a fast implementation [13] and the 

whole process is divided into two phases, namely 

nonsubsampled pyramid (NSP) and nonsubsampled 

directional filter bank (NSDFB), which is achieved 

by using two-channel non-subsampled 2D filter 

banks. The former performs multiscale 

decomposition and the later provides direction 

information. The NSP divides image into a low 

frequency subband and a high frequency subband at 

each decomposition level. If the decomposition level 

is  , NSP can generate     subimages, which 

consists of one low-pass image and   high 

frequency images. The subsequent NSDFB 

decomposes all high frequency subbands from NSP. 

Assume that    denotes the direction numbers of the 

NSDFB at the  th scale. The number of the 

directional subbands produced at the corresponding 

scale is    , whose sizes are all the same as the 

source image. After the low frequency component is 

iteratively decomposed in the same way, an image is 

finally decomposed into one low frequency subimage 

and a series of high frequency subimages. When the 

NSCT is introduced to the image fusion, its perfect 

properties will benefit designing fusion rules  

 

3.2 Detail Enhancement 
To increase the local contrast and enhance the 

important details in the dark and bright areas, the 

exponential transfer function, as one of basic image 

enhancement functions, is applied to perform 

multiscale contrast stretching so as to tune subband 

coefficients at each scale. The relationship between 

the enhanced subband coefficients and the original 

subband coefficients at the  th scale with the  th 

direction is derived as 

             
             

       
      

                                      

where    is a positive and scale-related parameter 

(its value is set to 0.03), which can control the degree 

of enhancement. 

 

3.3 Construction of Visual Weight Map 
Weight map objectively reveals the visual 

importance of each pixel of the original images. In 

principle, these pixels which are the lower brightness, 

saturation should be assigned smaller values, and 

these pixels with abundant detail information should 

be given greater values. In this study, a unique image 

quality measurement is exploited to compute weight  

which utilizes the characteristics that Human Visual 

System is sensitive to the contrast, intensity and 

color difference of image. The visual weigh maps are  
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calculated by three key factors, namely visibility, 

saturation and well-exposedness. Considering the 

practicability and robustness of the algorithm, weight 

extraction in static scenes and dynamic scenes is 

respectively defined as 

 
                      

                                                    

  
                      

                                                   
 
where    ,    

 represents weight of the pixel of 

the location       for the  th exposure image in 

static or dynamic scenes.         ,         
       ,        denotes the visibility, consistency, 

saturation, exposure respectively. 

 

3.3.1 Visibility Measurement 

Usually, exposure fusion method guided by visibility 

is beneficial to produce a result with fine details. 

Mathematically, the visibility is calculated by 

gradient magnitude of input image, which tends to 

assign larger weight for these pixels such as edges or 

corners. The measurement is defined as 

 

                 
          

 

  
                                                

                
          

 

  
                                                

                             
       

 
    

       
 
                           

 

where   
       and   

       are the partial 

derivatives of the   and   directions in the source 

images, respectively.    is the standard deviation. 

3.3.2 Consistency Measurement 

According to the fact that the gradient direction will 

have significant changes for some areas where there 

exist the moving objects among different images [24], 

we apply gradient direction change to detect the 

inconsistency information caused by the motion 

targets and further remove ghost artifacts. The 

consistency is measured in a window based manner 

and the azimuth angle of the  th input image is 

defined as 

 

                               
  
      

  
      

                                         

 

The gradient direction change between  th image 

and  th image is calculated from Eq. (8). Further, we 

get cumulative gradient direction changes, namely 

       , as is defined as Eq. (9). Unlike the method 

by Zhang et al. [24], the proposed algorithm 

strengthens the sensitivity of consistency using a 

gamma function. Apparently, the larger gradient 

direction change will give rise to the smaller        , 

which indicates that the pixels contained within the 

motion objects have very small weights. Here, the 

index   is set to 3. 

 

           
                            

  

       
           

 

               
         

 

   
  

 

   
   

 

                           

3.3.3 Saturation Measurement 

The depth of color saturation of an image has great 

influence on visual perception and the saturated color 

make it look vivid. For some underexposed or 

overexposed regions, the color will become faded. 

Similar to the method in [17], in this paper, the 

saturation         is represented as Eq. (10). Here, 

  is the mean value of  ,  ,   (red, green and 

blue color channel). 

 

                                              

3.3.4 Exposure Measurement 
Just looking at the visual effect, the overexposed 

regions show nearly white (intensity values of pixels 

are almost 1), whereas the underexposed regions 

display nearly black (intensity values of pixels are 

almost equal to 0). To abandon these pixels which 

are underexposed or overexposed areas and record 

those pixels with better brightness values, Exposure 

   is calculated as 

 

            
 
        

     
 
        

      
 
        

                     

3.4 Contrast adjustment 
Image contrast enhancement is an important issue in 

image processing，it will balacce global and local 

contrast changes and reduce chroma distortions. A 

lot of contrast enhancement techniques have been 

used for improving the contrast of an image [26, 27]. 

However, there is no universal method for all 

applications, mostly because the kind of correction 

depends on the scene. In this paper, the main idea of 

the contrast adjustment is to modify the gradient 

vector field and to solve the corresponding Poisson 

equation with two variants in [28], the first of which 

adjusts the contrast by increasing the gradient in the 

dark regions of the image and the other one enhances 
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all small gradients in the image. In view of uneven 

exposure situation for the input images, we utilize 

the selective contrast adjustment on different kinds 

of exposure images. When the selective regions are 

on the dark regions of the image  , namely 

“Enhanced dark”, we will obtain the contrast with 

good results using a simple function. The region   

and the guidance vector field are defined as 

 
                                                                              

 

      
                    

                   
                                                      

 

In the implementation, the parameter T and a, as 

default values, are set to 50 and 2.5. On the other 

hand, in order to modify the gradient over the whole 

image and not just on dark regions, namely 

“Enhanced global”. Usually, the norm of the vector 

field becomes a power of the norm of the gradient 

and a concave power is adapted to enhance small 

image details, whereas a convex power may be 

adapted to overexposed images. Thus we may use a 

concave power function to reduce the large gradients 

and increase the small ones. The guidance vector 

field is computed as 

 

                                                                                   

where the value for   is 0.8, by default. 

 
Fig. 2 Comparison between the original image and the result obtained by the contrast adjustment in [15]. (a) and (c) Original images. (b) and (d) The 

results by the “Enhanced dark” and “Enhanced global” with default parameters, respectively.

Fig. 2 illustrates the comparison between the 

original images and the results obtained by the 

contrast adjustment. As shown in Fig. 2, though the 

adjustment of contrast, the visual effects of two 

original images achieve the significant improvement, 

but do not produce artifacts. More important, 

perceptually black objects still remain black. 

 

3.5 Fusion Process 
 

 

In order to gain the visually consistent fusion result, 

we first normalize and smooth   weight maps 

above by a Gaussian kernel function, the 

corresponding weighted average is represented as 

       . Then the fused subband coefficients 

  
       is obtained from Eq. (15). Thereinto, 

  
       denotes the  th decomposition subband 

coefficients of the  th image. 
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3.6 Improvement of Detail Visibility 
Gain control can effectively improve the sharpness 

of decomposition subbands, resulting in a 

detail-enhanced fused image, which has been 

successfully applied in [29, 30]. The procedure of 

constructing gain control map is as follows. First, an 

activity map can be expressed as Eq. (16). Then, the 

aggregated activity map         and gain map 

  
  

      can be derived from Eq. (17) and (18). 

Lastly, the blended subband coefficients are 

modified using Eq. (16). 

 
                            

                                              

 

                         

 

   
                                               

 

             
           

          

 
 

     

                          

 

             
  

        
          

                                      

 

where,   is a weight factor (set 0.8),   is a small 

parameter that prevents the noise from blowing up, 

  is a constant related to spatial frequency. The 

parameter     is used to control the extent of 

frequency, and   is a gain control stability level. 

 

 

 

Fig.3 Comparison of the fused results without gain map and with gain 

map. (a) Input sequence. (b) Result by Mertens et al. [17]. (c) Our result 
(with gain control). 

Fig. 3 shows the visual effect by using gain 

control. While for all the subbands are modified by 

the gain control maps, this technique does well in 

both preserving details and enhancing the brightness 

of the final image (see Fig. 3(c)). 

4 Experimental Results and Analysis 
Experiments are performed on six different 

exposure image sequences, four sets of which are 

taken in static scenes and the rest are from dynamic 

scenes. The fusion results are respectively compared 

with other existing exposure fusion approaches. 

Additionally, four objective image fusion quality 

metrics, namely average gradient (AG), information 

entropy (IE), uniform intensity distribution (UID) 

and gradient based index (     ) are employed to 

assess the fusion performance of different results. 

Conceptually, AG reflects the clarity of an image, 

which measures the spatial resolution of the fused 

image [31]. IE indicates the amount of information 

including in an image [32], the higher value of 

which shows the fused image contains more 

information contents than the original images. UID 

is used for the description of uniform intensity and 

color distribution [33]. The higher UID shows that 

the final image attains better effect in term of 

brightness, uniformity and color. Moreover, the 

fusion quality index       measures the amount of 

salient information transferred to the fused image, 

which quantifies the difference between the final 

image and the source images [34]. Thus, according 

to the implication of metrics above, the greater 

value shows the fusion performance is better. 

4.1 Fusion of Images with Static Scenes 
Fig. 4 provides a test of exposure fusion and our 

result is compared with the results produced by Li et 

al. [25] and Mertens et al. [17]. Obviously, all 

fusion results exhibit good colorfulness and 

brightness. However, see these regions where the 

red arrows are pointing in Fig. 4(a), (b) and (c) 
carefully, the proposed method obtains the best 

visual effect in terms of clarity, texture and detail 

visibility. In Fig. 5, another experiment is carried 

out, which gives the comparison of fusion 

performance between the proposed method and the 

classical method in [17]. As shown in the closeup 

views of Fig. 5(c) and (d), whether the texture 

details of the rock on the coast or the sharpness of 

the plants on the bank, the proposed method 

achieves better visual perception. Especially in the 

dark areas, the texture details are more apparent. Fig. 

6 shows two other exposure fusion examples in 

static scenes including “Door” and “Igoo”, in which 
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our result is also compared with the final image in 

the recent method [35]. As shown in Fig. 6(b)-(f), 

we hardly discern the details of region marked by 

the red arrow in Fig. 6(c). Despite the results of Fig. 

6(b) and Fig. 6(d) have some improvement, for 

these regions that are highlighted by the red arrows, 

their results are dim and blurred. Relatively, the 

final result (see Fig. 6(e)) of the scheme in [35] has 

a good contrast and clear texture, but the brightness 

of the marked regions is still low. In contrast, the 

proposed method not only well preserves detail 

information in bright regions but also enhances the 

brightness in the dark regions. The contrast and 

color adjustment also obtain better effect.
 
 

 

Fig.4 Comparison of test results by different approaches. (a) Input sequence. (b) Result by Li et al. [25]. (c) Result by Mertens et al. [17]. (d) Our result. 

 

 

 

 
Fig.5 Comparison of test results by our scheme with the representative fusion method. (a) Input sequence. (b) Result by Mertens et al.[17]. (c) Our 

result. (d) Comparison of two close-up views (corresponding to rock on the coast and plants on the bank, and our results locate on the right side). 
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Fig. 6 Comparison of test results by different exposure fusion methods. (a) Input sequence. (b) Result by Fattal et al. [30]. (c) Result by Li et al.[25]. (d) 

Result by Mertens et al. [17]. (e) Result by Singh et al.[35]. (f) Our result. Two input sequences are are called “Door” and “Igloo”, respectively. 
 

4.2 Fusion of Images with Dynamic Scenes 

Fig. 7 shows an example of verifying effectiveness 

of the proposed method in dynamic scenes, the 

scenes of which are several pedestrians in an arch 

corridor. Although the fusion scheme in [22] has 

de-ghosting function, it introduces serious blocking 

artifacts (see Fig. 7(b)). Again, it is low visibility 

and natural contrast for the ceiling areas (the top 

region labeled by the red arrows). Intuitively, both 

the proposed method and the scheme in [25] not 

only effectively remove ghost artifacts, but also well 

improve the sharpness, brightness and colorfulness 

of the final image. However, it is easy to see the 

difference between them from Fig. 7(e), which is 

respectively the histogram distribution of Fig. 7(c) 

and (d), the peaks of the histogram produced by our 

algorithm are more flattened and smooth, which 

demonstrates that it obtains the fused image with the 

higher clarity and contrast. In addition, by 

comparison of the zoom regions (as shown in Fig. 

7(f)), where are the pillar bottom and floor of the 

building (the regions labeled by the red boxes in Fig. 

7(b)), our method obviously produces the best result. 

As another testing example of exposure image 

fusion in dynamic scenes, input sequence of Fig. 8 

shows a dynamic scene with several persons 

walking in the park. Obviously, the proposed 

method and the algorithm in [24] can thoroughly 

eliminate the negative effects caused by the motion 

objects and obtain a high quality image without 

ghosting artifacts. However, there is the case that 

our algorithm sometimes excessively enhances the 

brightness of some regions when most of the input 

images are overexposed images, resulting in the 

blocking effects at the edges of objects. Thus, for 

the proposed scheme, there is still work for 

improvement. 
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Fig. 7 Comparison of three exposure fusion schemes in dynamic scenes. 

(a) Input sequence. (b) Result by Gallo et al.[22]. (c) Result by Li et al. 

[25]. (d) Our result. (e) Histogram distribution of each R, G, B 
color-single-channel of (c) and (d). The first and second rows are the 

histogram distributions of three color channels in (c) and (d), 

respectively. (f) Close-up views of (b), (c). (d), in left-to-right order. 
From top to bottom, the zoom regions correspond to the pillar bottom 

and floor, respectively. 

 

 

4.3 Objective Fusion Quality Evaluation 

To verify the superiority of the proposed scheme, 

four objective image fusion quality metrics are 

employed to test the effectiveness and feasibility of 

our method. They evaluate the fusion performance 

from different aspects such as the clarity, visibility 

and containing the amount of information each other, 

Table 1 and Table 2 give the values of several 

indicators generated by different methods in static 

and dynamic scenes, respectively. As can be seen 

from two tables, the proposed method obtains the 

largest value for four quality evaluation indexes, 

which demonstrates that the proposed method 

provides a better performance in terms of the larger 

values for all tests. These results are consistent with 

subjective visual perception. It is also confirmed that, 

whether in static scenes or dynamic scenes, the 

proposed fusion method based on visual weight map 

and gain control can capture abundant information 

of the original images into the fused image. 

 
Fig. 8 Comparison of two exposure fusion schemes in dynamic scenes. (a) Input sequence. (b). Result by Zhang et al. [24]. (c) Our result. 

Table 1. Quantitative comparison of different exposure fusion methods in static scenes 

Image Index 
 Methods 

Mertens et al. Li et al. Fattal et al. Singh et al Proposed 

Door 

AG 7.88 6.88 6.40 13.31 10.22 

IE 13.51 13.04 14.23 14.20 15.01 

UID 0.92 0.88 0.75 0.92 0.93 

      0.61 0.59 0.51 0.64 0.68 

Igloo 

AG 10.40 8.31 8.96 9.52 12.05 

IE 13.57 13.01 14.61 13.42 15.56 

UID 0.92 0.91 0.88 0.89 0.92 

      0.62 0.61 0.58 0.65 0.67 
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Table 2. Quantitative comparison of different exposure fusion methods in dynamic scenes 

 

 

5 Conclusions 
We develop a novel multiple exposure fusion 

approach, which well extracts salient features of the 

original images using visual weight maps and 

increases the visibility of details by gain control. 

Moreover, utilizing of different image quality 

measurements, such as the visibility, saturation, 

well-exposedness and consistency, makes the 

algorithm applicable to both static scenes and 

dynamic scenes. Experimental results demonstrate 

the validity of the method, especially for the case 

that the interested regions are in low brightness. It is 

noted that the proposed scheme has the limitation of 

over-enhancement at the edges of objects when most 

of input images are overexposed. Ongoing research 

will optimize the fusion performance of the 

algorithm by introducing the theory of adaptive 

system. 
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